
1

CRITICAL ISSUES WITH 

QUNATIFICATION OF DICRETIZATION 

UNCERTAINTY IN CFD

Ismail B. Celik, Ph.D.

Mechanical and Aerospace Engineering Department

West Virginia University

Presented at: NETL, 2011 Workshop on 

Multiphase Flow Science Airport Marriott 

Station Square, Pittsburg, PA

August 16-18, 2011



2

Errors and Uncertainty!

Global 

uncertainty

Numerical 

error

Modeling errors,

physical errors 

Input error

Etc.

Discretization 

error

Iteration convergence, 

grid quality, domain size 

solver residue, 

round-off error etc.

Common methods of quantifying discretization error:
Zhu-Zienkiewicz (ZZ) and energy norm methods

 Richardson extrapolation (RE)
 Error transport method (ETE)

Hybrid ETE and Residual Methods
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V&V Overview*

model input  num DE

*After Coleman (see e.g. ASME V&V 20, 2010)
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On the question of determinism

• “ … the randomness of quantum 
mechanics is like a coin toss*. It looks 
random, but it‟s not really random.” 

Carsten van de Bruck

– from  Musser , G. (2004) „Was Einstein 
Right?‟ Scientific American September issue, 
pp. 88-91 

– * All coins tossed from a skyscraper with different initial 
velocities will reach the same terminal velocity due to friction loss 
(i.e. information loss)
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Error Analysis: Deterministic Methods

Goal: Assessment of all types of numerical errors and modeling errors with 
repeatable (deterministic) calculations.

Calculation Verification: A calculation is what it is supposed to be in the 
context of numerical analysis, i.e. the equations (PDE’s)  are solved right! 
(After P. Roache)
In practice: Assess grid convergence

Validation: Assessment of modeling errors in conjunction with verification: 
Compare with Experiments, DNS, Observations, Perceptions

• Paradox: Determinism  Randomness/surprise/unpredictable
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The Black Swan Phenomenon:
White swans, gray swans, and black swans

Ref.: The Black Swan, The impact of the highly improbable  by N.N. Taleb,  2010, Random House
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Numerical Dissipation is Always There! 

• Theoretical analysis by Ghosal (1996, J. Comp. Phys, 125, 

pp. 187-206) concludes:

– Finite Diff. Error =  const * q ; is the wave number, q = const = 

0.75 and independent of the scheme, const varies with the scheme (1.03 

for 2nd order CD, 0.5 for 8th order CD)

• Choi and Moin (1994): 2nd order methods have certain 

advantages, and ‘higher order’ is not necessarily better.

• Even with higher order methods Numerical dissipation can be 

as large as the modeling error, and may cancel each better.

The key question: How do the numerical errors interact with modeling errors?  
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Uncertainty of Numerical Solutions

Explicit SolutionImplicit Solution

(Dörnbrack et al. 2005)
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Numerical dissipation & Effective Re 

Data: Courtesy of Dr. Ing. Markus Klein (2005); Channel flow

Mean velocity profile Energy spectra
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Transition in a Plane jet:  

Data: courtesy of Dr. Ing. Markus Klein (2005)

Turbulent kinetic energy profiles for a plane jet: DNS
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Transition in a Plane jet & Eff-Viscosity  

Resolved turbulent kinetic energy profiles, (Klein et el, 

2005); Smagorinsky model, Re = 4000 (based on inlet 

velocity =1.0 m/s and nozzle diameter = 1.0m)

Comment: resolved 

tke should increase 

as grid is refined, or 

should it ?

SSM
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Estimated numerical viscosity normalized by laminar 

viscosity for plane jet LES data: (a) SSM, (b) DSM

aa

bb
Sgs-viscosity obtained from plane jet LES data.

Importance of Numerical Viscosity
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Error Analysis: Iterative Convergence

Goal: Reduce normalized

residual 3-4 orders of magnitude

• L2_norm of approximate
iteration error > L2(Residuals)

• Eigenvalue of the solution matrix is important; Approximate 
iteration error is given by
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Error Analysis: Grid Convergence

Goal: Quantification of discretization errors

(3 grid study is needed to determine p, c, and )
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Error Analysis: Richardson Extrapolation-1

; observed order p

Variants: Celik et. al. (2005), Eca and Hoekstra (2004), Orozco et al 

(2004), Celik and Karatekin (1997), 

e.g.: Restrict   0<p<5;  but p=-6 means something (see next slide)

Perform at least 4-grid calculations and treat the outcome-as 

statistically random outcomes (Least squares, Eca et al, 2003-

2004).
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Richardson Extrapolation & Numerical Uncertainty:

GCI Proposed by P. Roache

Using a global order works better!
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Uncertainty estimation methods

•Grid Convergence Index (GCI)

•Coefficient of variation
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Example: Backward Step Flow

•The four sets of  grids used to calculate the extrapolation with least 

square method are 101-141-181-241

grids ratio grids Ratio Grids Ratio grids ratio

101*101 101*101 141*141 101*101

121*121 1.20 141*141 1.40 181*181 1.29 141*141 1.40

141*141 1.17 201*201 1.43 241*241 1.33 181*181 1.29

161*161 1.14 241*241 1.33

181*181 1.13

201*201 1.11

241*241 1.20
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Streamwise Velocity at x/H=0 y/H= 1.1
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Convergence patterns --monotonic and oscillatory 
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Oscillatory Convergence: Manufactured FDE 

(Celik etal, 2005)
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Error Analysis: Richardson Extrapolation-4

0 cos 2p

h gh fh

Oscillatory convergence examples
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Error Analysis: Richardson Extrapolation-5

Oscillatory convergence examples
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AES: An Alternative Error estimation method (Celik et al, 2008):

Present method assumes that the true error Et is proportional to the 

approximate error, Ea 

For  a three grid (triplet) calculation:

True error:

Approximate error:

Global proportionality constant:

Local  proportionality constants:

Fine-medium meshes

Medium-coarse meshes

1=h2/h1

2=h3/h2

h1<h2<h3

N: # of grid points
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i j i j

k
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Analytical and numerical solutions of 

the scalar 

True error, approximate error and 

estimated true error 

Example Application of the AES(Approximate Error Scaling Method 
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Upwind scheme for convective terms with refinement 

factors of (a) 2 and (b) 3 

Central differencing for convective terms with 

refinement factors of (a) 2 and (b) 3

Approach to Asymptotic Range
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Geometric 

configuration

Simulation Details

Reynolds number 100,000

10,000

1,000

Turbulence models Standard k-

RNG k-

SST k-

Inlet velocity (U0) 5m/s

0.5m/s

0.005,/s

Time step 0.006 s

Total time 40 s

Vel.-Pres. Coupling SIMPLEC

Scheme QUICK for conv.

2nd order cent for diff

Residuals 1x10-4

worker

Exhaust opening

Proposed by Dunnett (1994)

2D flow around an ellipse (with contraction in the downstream)
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Grid dependency of  parameters relevant to flow separation

2D flow around an ellipse (with contraction in the downstream)
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Table: Number of cells used in two-dimensional simulations

Grid Re = 1.0x105 Re = 1.0x104 Re = 1.0x103

G1 9,594 (Δy1=7.2x10-3m) 51,144² (Δy1=4.6x10-4m) 51,144² (Δy1=4.6x10-4m)

G2 24,993 (Δy1=3.6x10-3m)

G3 49,037 (Δy1=2.7x10-3m)

G4 59,340¹ (Δy1=1.8x10-3m)

G5 76,663¹ (Δy1=9.0x10-4m)

G6 81,081¹ (Δy1=1.8x10-4m)

G7 93,883¹ (Δy1=6.0x10-5m)

¹: Enhanced wall treatment used in k- model calculations

²: Transitional flow modifications are enabled in SST k- model calculations
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650MW Boiler Simulations
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Discretization Uncertainty
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Sketch of the flow plenum (top view) 

3-Dimensional perspective 
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Coarse grid details 

3D structured boundary layers, extending 20% of the pole diameter, Dp 

Average y+<5 

Enhanced wall treatment in the near wall region 

Rest of the domain : unstructured tet-mesh

Mesh coarsening factor, r, of ~1.5 

593,928 (coarse), 873,493 (medium), and 1,186,944 (fine) cells 
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Flow Details

Low-Re High-Re

Inlet velocity of a single jet 1.611x10-1 m/s 5.660x10-1 m/s

Total flow rate 1.246x10-4 m3/s 4.382x10-4 m3/s

Average plenum velocity 7.739x10-3 m/s 2.720x10-2 m/s

Flow through time (FTT) 32s 9s

Total execution time 450s (~14 FTT) 250s (~28 FTT)

Pole Reynolds number 245 431

Turbulence models : RNG k- , SST k-

Residuals : 1x10-4

Time step : 1x10-3s

Numerical Schemes : 2nd order upwind (Conv.),  2nd order central (Diff.)

2nd order (Pressure) ,        1st order (time)
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SST-C-L SST-C-H SST-M-H SST-F-H 

RNG-C-L RNG-C-H RNG-M-H RNG-F-H 

Separation from middle rod
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Ensemble ave. of  axial velocity profiles over the last 100s 

SST k- (top row), and RNG k- (bottom row)  

P2 P3 P5
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Predicted uncertainties with JFE method at P2 

SST k- model                                      RNG k- model



38

Predicted uncertainties with JFE method and averaged p (order) at P2

SST k- model                                           RNG k- model
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Predicted uncertainties with AES method at P2

SST k- model                                             RNG k- model
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Spatially filtered wall shear stress profiles and uncertainties by AES method 

at y = 0.018475m z = 0.2175 m

SST k- model                                      RNG k- model
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Spatially filtered rms wall shear stress profiles calculated using ensemble averaging 

along with the uncertainties by AES method at y = 0.018475m z = 0.2175 m

SST k- model                                      RNG k- model
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ETE vs. RE
• Richardson extrapolation (RE)

– Popular, relatively reliable (+)

– At least three sets of grid, expensive (-)

– Difficult to identify asymptotic range (-)

– Does not work for oscillatory grid convergence (-)

• Error transport method (ETE)

– No extra effort in grid generation (+)

– Can be solved using the same scheme (+)

– Can be used as a post-processing tool for steady 
problems(+)

– Additional recourses for code development (-)

– Difficulty in determining source term of ETE (-)

– Reliability still under investigation (-)

Ref: Celik & Hu, 2004
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Literature review of ETE

• Roache (1993 & 1998)

• Van Straalen et al. (1995)

• Zhang et al. (1997)

• Wilson & Stern (2001) 

• Celik & Hu (2002, 2003)

• Qin & Shih (2003)



44

Error Transport Equation (ETE)

~
-error is defined as:

ETE:

L  : differential operator (PDE)
Lh : difference operator (FDE)

: exact solution to PDE
~ : numerical solution

R  : residual

(1) 

(2))()(

0)
~

(

0)(

RL

L

L

h

h

)()
~

()()( hhh LLL

represents the truncation error of a discretized equation, 
i.e. the error source term

Non-linear:

Linearized:
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2D Poison Equation:
Exact error ETE error

Central difference Scheme
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2D Steady Convection Diffusion

  

Exact error Calculated error

 

Line plot along diagonal

1st order Upwind scheme
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Generalized Derivation of Error 

Source

implicit 
coefficient

matrix

explicit 
coefficient

matrix

new old

Influence circle 

r

Need to know: 
1. Access to the coefficient matrix

2. Influence circle (or radius)
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Conclusions

• For RANS, methods based on  Richardson  extrapolation are 

preferred for their robustness, however they do not always work 

and it is not easy to detect where an when they will fail.

• Although there is evidence that time step can be simply treated as 

another discretization parameter, it is much safer to use a 

relatively small time step so as to minimize its effect compared to 

space discretization. 

• To quantify discretization errors at least 3-4 grid calculations are 

needed (may be 4-5 sets for oscillatory convergence); It may be 

erroneous to assume monotonic convergence just by observing 

the behavior of three or four points.

• A hybrid of extrapolation and ETE methods is the way to go!
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Challenge

Predict the „truth‟ within an acceptable confidence interval 

without knowing the „truth‟

T = ‘truth’ fuzziness about truth

T

c

E

C E

“What can not  be 

computed is 

meaningless!”

(Davies, 1992)
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